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Abstract:. In the paper different architectures with partly self-developed simulation packages are 
described illustrating the benefits of combining simulation and machine learning (ML) techniques 
in manufacturing. From the artificial intelligence (AI) and ML side, artificial neural networks, 
heuristic search, simulated annealing, and agent-based techniques are put into action. The 
applicability of the proposed solutions is illustrated by the results of experimental runs.  
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1 INTRODUCTION 

Simulation is usually an efficient technique to make 
difficult problems more tractable. It can contribute to 
elaborating new algorithms, supporting decision 
makers, decreasing the risk in investments, and 
running the systems exposed to changes and 
disturbances more efficiently. 

From simulation point of view, one can speak about 
knowledge-based hybrid systems (KBHSs) if 
simulation and some kind of intelligent techniques, 
e.g. expert systems (ESs), artificial neural networks 
(ANNs), fuzzy systems or their combination are used 
together. Without aiming at completeness, four main 
architectural categories of this special group of hybrid 
systems can be distinguished (Figure 1): 
• Embedded: The simulation model is embedded in 

a KBS, which can use simulation (SIM) in 
decision making (A), or the simulation model 
contains a KBS (B), (e.g. for simulating 
uncertain processes). 

• Parallel: The simulation communicates with the 
user and can access the results of the decisions 
made by the KBS (C), or the KBS communicates 
with the user, and controls the simulation (D), 
which can be replaced later by the real system. 

• Co-operative: The KBS contains some 
knowledge about the simulation model as well as 
about the field of application (E). This form of 
combination is very useful for users non-
experienced in simulation, by helping them 
building or modifying the model.  

• Intelligent front-end: The KBSs generate the 
necessary instructions for the user from different 
aspects, interpret and explain the results from the 
simulation package (F). 
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Figure 1: Possible combinations of simulation and 

KBSs 

Learning denotes changes in the system that is 
adaptive in the sense that they enable the system to do 
the same or similar task more effectively next time 
[1], [2]. Obviously, ML techniques can enhance the 
performance of any KBHS architecture of Figure 1, 
and at the same time, simulation can be used for 
generating training examples for learning. 

The paper illustrates the benefits of combining 
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simulation and machine learning techniques in three 
fields: 
• modelling, simulation and optimisation of 

production processes and process chains, 
• design, control and reconfiguration of flexible 

manufacturing systems (FMSs), 
• design and control of holonic manufacturing 

systems (HMSs). 

2 SIMULATION AND OPTIMIZATION OF 
PRODUCTION PROCESSES AND PROCESS 
CHAINS 

Difficulties in modelling production processes are 
manifold: the great number of different machining 
operations, multidimensional, non-linear, stochastic 
nature of machining, partially understood relations 
between parameters, lack of reliable data, etc. A 
number of reasons back the required models: design, 
optimisation, control and simulation of processes and 
design of equipment [3], [4]. 

An approach based on back propagation ANN-
learning and heuristic search for generating 
multipurpose models of production processes which 
are applicable for a set of assignments and can satisfy 
the various accuracy requirements was described in 
[5]. As to the application phase, a novel technique 
based on simulated annealing search was developed 
to find the unknown parameters of the model in 
certain situations.  

In the following space a block-oriented software 
named ‘ProcessManager’ for optimising operations 
and/or production chains form various points of view 
at the same time, will be introduced. The simulation 
technique is based on multipurpose ANN-models 

trained by using measured data. Multiple objectives 
are handled with the usual weighting technique.  

Figure 2 illustrates the application of ProcessManager 
for the threefold optimisation of the viewpoints of the 
customer (minimisation of the surface roughness, Ra), 
owner of the company (q, profit/productivity 
maximisation) and the production engineer 
(maximisation of process stability through the a/f 
ratio). Parameters resulted from the optimisation of 
the plate turning operation are illustrated by 3D-plots. 
Ratios of the weighting factors of the three variables 
to be optimised are represented along the axes.  

The ‘surfaces’ are to be used together, i.e. the 
movement on the plane marked by Ra and a/f occurs 
on each of the diagrams at the same time. The corner 
marked by q indicates the position where the 
viewpoint of the company owner is the most 
important and the movement along the axes Ra and 
a/f represents that the corresponding criteria become 
more and more important with respect to q. 

The results can be directly used for supporting 
business decisions and compromises.  

2.1 Simulation and optimisation of process 
chains 

The sequence of production operations can be 
modelled by a chain of models connected by their 
input-output parameters [6]. In addition to process 
optimisation, ProcessManager supports the modelling 
and optimisation of process chains as well (as a next 
step, its application in process planning is also 
foreseen). 
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Figure 2: Parameters resulted by the threefold optimisation of the plate turning operation (normalised values) 



  

Operation p
Parameter 1
Parameter 2

Parameter nq

...

Evaluation 1
Parameter 1
Parameter 2

Parameter np

...

Evaluation N
Parameter 1
Parameter 2

Parameter nn

...

Operation 1
Parameter 1
Parameter 2

Parameter n1

... ...

...

...

Model 1,1
Parameter 1
Parameter 2

Parameter o1,1

...

Model 1,m1
Parameter 1
Parameter 2

Parameter o1,m1

...

Model N,1
Parameter 1
Parameter 2

Parameter oN,1

...

Model N,mn
Parameter 1
Parameter 2

Parameter oN,mn

...
...

Parameter 1
Parameter 2

Parameter n1

...

Parameter 1
Parameter 2

Parameter nn

......

PROGRAM - PROCESSMANAGER

Evaluation, optimisationProduction chain

External
connections

Chain
building

External
Models

Targets of
optimisation

 
Figure 3: Hybrid modelling and optimisation of process chains by ProcessManager 

ProcessManager incorporates (Figure 3): 
• Definition of the elements of the chain.. 
• Determination of the process models in a hybrid 

way, by integrating analytical equations, expert 
knowledge and example-based learning. 

• Connection of the single models into a process 
chain by coupling input-output model parameters 
not limited to models of successive processes in 
the chain. 

• Definition of eligible intervals or limits for the 
process parameters and monitoring indices. 

• Definition of a cost function to be optimised, etc. 

3 DESIGN, CONTROL AND 
RECONFIGURATION OF FMSs 

An FMS design methodology which combines design 
of experiments (DoE) technology, Taguchi method, 
and knowledge based simulation techniques was 
described in [7].  

The design of new FMSs is not a daily assignment, 
but their re-design, reconfiguration for a new product, 
or in case of different disturbances is a very frequent 
task. The application of simulation techniques is 
usually time consuming, which is tolerable in the 
design phase, but it is hardly acceptable in real 
manufacturing situations. As a reasonable solution, 
the substitution of the simulator by ANNs for 
mapping between design factors and system 
performance is proposed. The applicability of the 
approach is demonstrated through 

• the estimation of the throughput time of FMSs, 
• and the determination of the appropriate speed of 

the AGV in the analysed system. 

3.1 Simulation and ANN-based learning and 
estimation of the throughput time 

During the described investigations three-layer back 
propagation (BP) neural networks were applied for 
the FMS at the TU Budapest in [7]. Sufficient 
number of pattern-target pairs were generated by 
simulation to cover an appropriate broad combination 
of design, indicative and noise factors. The number of 
machine tools and the place of measurement were 
considered as design factors. The speed of the portal 
robot, the Fanuc robot, and the AGV have been 
defined as indicative factors. The number of scrap in 
a batch, the machine set-up and maintenance time, 
furthermore, the frequency and duration of tool-
change were selected as noise factors. 

The networks were set up as shown in Figure 4. 
Design, indicative and noise factors constituted the 9 
elements of input patterns for three-layer networks 
with the variable number of hidden neurons (9-X-1 
structure). During learning 104 simulated values were 
used as targets. 

The best estimation results for test patterns were 
reached by the network of 9-5-1 structure (7,3% 
maximum, and 3,2% average relative error). These 
results projected success in applying neural networks 
trained by simulation results for throughput time 
estimation. 
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Figure 4: Artificial neural network for throughput 

time estimation 

3.2 Combined use of DoE and ANN techniques in 
the reconfiguration of manufacturing systems 

The goal in the reconfiguration phase is to develop a 
new version of the basic configuration, while 
maintaining the original basic characteristics of the 
system as much as possible. Motivations of 
reconfiguration are manifold: introduction of a new 
product within the family, machine brake-down, the 
modification of the process plan or the deadline of 
shipping, etc.  

Reconfiguration usually leads to an iterative 
simulation-evaluation procedure. Generation of a 
network which, in some sense, realises the inverse of 
the simulation function is of significant importance 
[8]. Figure 5 illustrates a simplified problem setting. 
The speed of the AGV in the system is to be 
determined on the base of the other (design, 
indicative and noise) factors kept constant, and the 
required throughput time of the system. 

 
Figure 5: Artificial neural network for determining 

the speed of the AGV in the reconfiguration process 

Through the appropriate use of the training patterns 
the weights of the 9-8-1 network in Figure 5 were 
generated by BP learning. The estimation of the AGV 

speed for test pattern resulted in a 5,2% maximum, 
and a 2,1% average relative error. 

The result indicates the applicability of this procedure 
(i.e. realisation, in some sense, of the inverse of the 
simulation function by ANNs) for reconfiguring 
manufacturing systems, substituting the highly 
iterative, time consuming process. 

4 DESIGN AND CONTROL OF HMSs 

Management of complexity, changes and 
disturbances is one of the key issues in production 
today [9]. Holonic manufacturing systems (HMSs), as 
one of the new paradigms in manufacturing, consist 
of autonomous, intelligent, flexible, distributed, co-
operative agents or holons [10]. They represent viable 
alternatives to hierarchical and heterarchical 
structures and the corresponding reactive scheduling 
approaches. The industrial acceptance of holonics, 
however, is relatively low among others things by 
reasons of 
• the relative crudeness of the agent theory and its 

manufacturing applications, 
• the insufficient communication and decision 

making capabilities of present numerical 
controls, 

• the high investment costs of a production system 
working according to the agent principles, 

• the seemingly insurmountable difficulties in their 
stepwise integration into existing production 
systems [11]. 

Several approaches ere introduced and treated in [11] 
to overcome the above difficulties: 
• the use of simulation technique for developing 

agent-based control architectures, 
• the holonification of existing resources, 
• the holonification of traditional systems by using 

the virtual manufacturing (VM) concept. 

Here, we concentrate on the first and the third 
approach where simulation is a key issue. 

4.1 Development of agent-based architectures by 
simulation 

There are a number of open questions in holonics 
[12] which can be answered by extensive simulation 
only. The object-oriented simulation framework for 
the development and evaluation of distributed 
manufacturing architectures described in [12] 
provides a root model that represents a plant and can 
contain different agents. The object library 
incorporates two main agent types: resource agent 
and order agent. A plant in the model will contain 
only one order agent which is responsible for order 



  

processing, job announcements and job dispatching 
between different resources or groups (Figure 6). A 
model may incorporate several resource objects 
which can be initialised during construction (giving 
the name of the resource, process-capabilities of the 
resource, etc.). Only one information provider, i.e. the 
registration book, is treated centrally in the system. 
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Figure 6: Structure of a resource agent [12] 

The simulation framework is intensively used for 
research purposes. A new approach to agent-based 
scheduling developed and tested by the framework is 
described in [13]. 

4.2 Holonic control of traditional systems by 
using simulation 

In this Section a novel approach to holonification of 
whole manufacturing systems is introduced based on 
an extension of the Virtual Manufacturing (VM) 
concept [14]. Manufacturing sub-systems can be 
classified into four categories: Real Physical System 
(RPS), Real Informational System (RIS), Virtual 
Physical System (VPS), Virtual Informational System 
(VIS). VM makes it possible to simulate 
manufacturing processes in advance, without using 
real facilities, and by this way to accelerate the design 
and re-design of real manufacturing systems. 

A fundamental feature of the VM concept is that it 
realises a one-to-one mapping between the real and 
virtual systems, i.e. VIS and VPS try to simulate RIS 
and RPS, respectively, as exactly as possible. In this 
section an extension of VM concept is suggested and 
illustrated. The main novelty of the approach is the 
break with the above one-to-one mapping, more 
exactly the use of the VM concept to control a 
traditional (centralised / hierarchical) manufacturing 
system in a holonic way. 

Supposing that there is a central control unit in the 
traditional system, the fundamental requirements for 
the holonification of this system by the approach 
suggested here are as follows. The capabilities to 
communicate with the outside world, transfer control 
information to the resources, catch state information 
and to transfer them to the central unit, interrupt the 
functioning of the resources at given periods, stop or 
modify the processes started previously. 

The virtual part of the system (Figure 7) runs in a 
holonic way and incorporates order management, 
scheduling and control issues. For the realisation of 
the virtual part, simulation systems such as the 
framework described earlier in this Section can be 
advantageously used. Resource agents which, from 
technological point of view, correspond to the real 
resources of the traditional system can be easily 
constructed by using the object library of the 
simulation framework [12]. Order management 
proceeds fully in the virtual system. 

Decisions are made in the virtual, holonic system and 
conveyed to the VIS of the traditional system. The 
real production situation is sensed by the RPS and 
forwarded to the VIS, which initiates appropriate 
measures in a holonic way. As a summary, the 
traditional system shows a holonic behaviour.  

The holonic information system tested in a virtual 
environment has the potential of being used in real 
holonic systems. 
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Virtual System

 
Figure 7: Concept for holonification of traditional 

manufacturing systems by using the VM technology 

5 CONCLUSIONS 

Some examples were described in the paper for 
applying simulation and AI/ML techniques for 
different fields of manufacturing: 
(a) modelling, simulation and optimisation of 

production processes and process chains, 
(b) design, control and reconfiguration of flexible 

manufacturing systems (FMSs), 
(c) design and control of holonic manufacturing 

systems (HMSs). 



  

In (a) simulation incorporated trainable process 
models realised by ANNs was introduced. In respect 
to the notions of Figure 1, this integration approach 
belongs to category E, however, depending on the 
way of realisation, it can belong to category B or C. 

In (b) the usual simulation technique was substituted 
by an ANN trained by the simulator. This approach 
can be ordered to category D. 

The case (c) addressed the application of simulation 
for the design and control of HMSs. The later 
approach was especially interesting: agent based 
control of centrally or hierarchically structured 
systems by using simulation techniques was 
proposed. The solution can be put in category B (or C 
or E, depending on the given realisation/application). 

Taking, on the one hand, the availability of the 
rapidly growing computing power, and on the other 
hand, the new achievements in AI/ML (e.g. 
reinforcement learning), into account, a versatile and 
rapidly increasing application of this type of KBHSs 
is expected in nearly every field of manufacturing. 
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