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Abstract − Today’s complex manufacturing systems 
operate in a changing environment rife with uncertainty 
strengthening the requirement for developing production 
systems with the ability of self adaptation. Market 
competition forces production firms to work more and more 
efficiently. As a consequence, continuously increasing 
material removal rate and flexible automation tools, without 
active human supervision can be observed as trends also in 
the metal cutting industry. Monitoring the chip breaking 
process is one of the important factors for automated 
supervision. The paper presents artificial neural network 
(ANN) based models for identifying the cutting chip form 
based on measured monitoring data.   
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1. INTRODUCTION 
 
In metal cutting there is a tendency to achieve increased 

metal removal rate through high degree of automation and 
without active human supervision. This tendency requires 
reliable and controlled machining process.  

Surface finish, workpiece accuracy, tool-life and force 
components are widely emphasized. In general, less 
attention is paid to chip control, the occurrence of acceptable 
chip forms in the working zone, or the chip formation and 
chip breaking aspects; however, they have strong effects on 
the above features. Several chip control methods and 
techniques have been developed and applied in the practice: 
• Inserts or cutting edges with chip breakers are widely 

used, but the selection and the design of the perfect 
geometry are still a problem. 

• Predictive models developed through experimental 
database help in the selection of cutting tools and 
cutting conditions. 

• Special means to produce broken chips (use of vibrating 
tools, high pressure coolant, hardened workpiece 
material, etc.) are successfully applied for some 
operations. 

Fig. 1. shows the ISO standard [1], supporting the 
importance of the cutting chip form for making coded 
classification possible. 

 

 

 
Fig. 1. The ISO 3685-1977 (E) containing the standard chip forms 
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The type, or often called the form of the cutting chip is 
an important feature of cutting processes. It influences: 
• the stability of the process – e.g. long chips can disturb 

the machine, the environment and they have negative 
effect on the cutting process itself, 

• the environmental effect of the production – e.g. small, 
broken chips are far easier to handle, store, transport 
and recycle. 

 
2. CONCEPT 

 
The importance of the cutting chip form initiated 

research aiming at building up a system for classifying chip 
forms. Some attempts have been made till now to predict the 
breakability and shapes of chips, analytically [1-2]. The chip 
breakability diagrams (chip charts) supplied by tool vendors 
do not seem to be reproducible, and can mainly be used for 
the determination of the chip breaking region. These 
diagrams provide only a qualitative assessment of chip 
breakability under a given set of conditions. Some other 
possible methods for identifying the chip form (e.g. simple 
human-look or camera-based methods) are known. The time 
aspect of the chip identification plays an important role, the 
identification can be on-line and off-line, as well. The 
research reported on here aimed at preparing off-line chip 
identification and classification system, however, its further 
improvement allows extending the method to the field of on-
line solutions. The developed tool is expected to support 
decisions also on higher levels of manufacturing control, 
e.g. process planning, beyond the envisaged, original 
monitoring application. 

The above research goals suggested exploiting the 
manufacturing and monitoring data of the cutting process to 
support the classification.  

Reliable process models are extremely important in the 
different fields of computer integrated manufacturing. They 
are required e.g. for selecting optimal parameters during 
process planning, for designing and implementing adaptive 
control systems or model-based monitoring algorithms. A 
reliable model is required for the chip form classification, 
too.  

The applied artificial neural networks, neuro-fuzzy (NF) 
systems are general, multivariable, non-linear estimators, 
therefore, they offer a very effective process modelling 
approach. Soft computing techniques like this seem to be a 
viable solution for intelligent control and monitoring 
systems where real-time functioning, uncertainty handling, 
sensor integration, and learning are essential features [4-5]. 

Based on the above advantages of ANN based modeling 
and on the possibility for collecting different monitoring 
data during the cutting processes, ANN was proposed as a 
model of the experiment.  

Several experiments were performed by varying the 
cutting parameters, using the same machine, material and 
cutting tool for generating the data set required for training 
and testing the ANN model. 

 

3. DESCTRIPTION OF THE CUTTING PROCESS 
 
Applying ANNs as models require numerical parameters 

describing the analyzed system. As introduced in the 
previous paragraph, monitoring data are partly applied for 
the description of the cutting process. Data channels were 
build up delivering information from different acquisition 
sensors as enumerated bellow: 
• The energy aspect of the process is characterized by the 

power consumption of the turning machine. 
• Three components of the cutting force (Fig. 2.) were 

measured by using a piezzo-electric sensor incorporated 
in the tool holder.  

 

 
Fig. 2. The appointed directions concerning the 

calculated signal features 
 
 Thirteen statistical parameters were calculated from 
each of the time-series (three components of force and 
power signals), consequently, they were transformed into a 
set of monitoring-oriented description parameters. Typical 
measured signals are presented in Fig. 3. 

 
Fig. 3. Typical time signals of the three force 

components 
 
 The following paragraph lists the statistical features 
calculated form each of the time series [6]: 
• Average 
• Mean of the signal quadratic values 
• Deviation 
• Standard deviation 
• Power of the signal 
• 3. central moment 
• 4. central moment 
• Skewness 



• Excess 
• Maximum value of the signal divided by the deviation 
• Minimum value of the signal divided by the deviation 
• Signal maximum 
• Signal minimum 

Further parameters were measured for the detailed 
description of the process, its environment and effect: 
• Surface quality of the resulted individual work-pieces 

was measured and coded by a simple Ra value.  
• The tool insert condition was continually controlled by 

the value of the tool wear (VB) acquired after an 
experiment. If the tool turns to worn (the VB parameter 
exceeds a prescribed limit), it was changed 
immediately.  

• One temperature value was measured per experiment by 
the determination of the resistance change of an 
electrical cycle, incorporating the contact surface of the 
chip removal. 

• Naturally, the basic setting data (depth of cut, feed per 
revolution and speed) were also given as process 
description parameters.  

 Eleven data called “engineering parameters” were also 
formulated. These data partly incorporate the description 
features of the cutting process. 
• Average of the force in the feed direction (Fx in Fig. 2.) 

divided by the product of cutting speed and feed 
• Average of the force in the turning speed vector 

direction (Fz in Fig. 2.) divided by the product of cutting 
speed and feed 

• Average of the force in the third perpendicular direction 
(Fy in Fig. 2.) divided by the product of cutting speed 
and feed 

• Average of the force in the feed direction (Fx in Fig. 2.) 
divided by the product of depth of cut and feed 

• Average of the force in the turning speed vector 
direction (Fz in Fig. 2.) divided by the product of depth 
of cut and feed 

• Average of the force in the third perpendicular direction 
(Fy in Fig. 2.) divided by the product of depth of cut and 
feed 

• Temperature multiplied by cutting speed 
• Workpiece roughness multiplied by cutting speed 
• Average of the power signal divided by the average of 

the force component perpendicular to the rotation axle 
of the turning machine (Fy in Fig. 2.) 

• Average of the power signal divided by the product of 
the average of the force component parallel to the depth 
of cut (Fy in Fig. 2.) and the cutting speed 

• The “specific cutting energy”: the average of the power 
signal divided by the product of feed and depth of cut. 

As a summary, ninety-seven parameters were used per 
experiment to describe the cutting process serving as the 
parameter basis for the determination of the chip form. 

 
3. CODING THE COLLECTED CUTTING CHIP 

 
Fig. 3. shows some of the generated chips collected 

during the cutting experiments. They were coded by human 
evaluation, applying the above ISO standard. As it was 

experienced, this coding was a quite difficult step, because 
the ordering of a chip into a class proved sometimes to be 
ambiguous. 

 

 
Fig. 3. Some collected chips, showing the variety in their forms 

 
We think that this human evaluation resulted in a certain 

level of classification error. This uncertainty of the chip 
coding might have brought a certain level of noise in the 
learning and classification phases. 

 
4. CLASSIFICATION TASKS 

 
Originating from the different coding of the same chips, 

the above ISO standard also gives the possibility to 
formulate five classification tasks. The chip form classes to 
be identified in these assignments are listed as follows: 
1. ribbon, tubular, spiral, washer-type, conical-helical, arc; 
2. long, short, snarled 
3. ribbon_long, ribbon_snarled, tubular_long, 

tubular_short, tubular_snarled, spiral_flat, spiral_conical, 
washer-type_long, washer-type_short, washer-
type_snarled, conical_long, conical_short, 
arc_connected, arc_loose; 

4. flat, short, snarled, long, conical, connected, loose; 
5. good, acceptable, dangerous – describing the stability of 

chip removal. 
These assignments were subdivided into two subtasks as 

described in the next paragraph. 
 
5. SELECTION OF THE DESCRIPTION PARAMETERS 

RELEVANT TO ASSIGNMENTS 
 
The applied feature selection technique, which is based 

on the data of the measurements, done already is one of the 
common methods for selecting the most relevant parameters 
describing the process [6]. This technique is based on the set 



of collected parameters (input and output parameters 
together) and gives a sequence of the input parameters based 
on their incorporated information content, on the one hand, 
and assigns a measure to sequence elements, on the other. 
Some of the “best” features completed with the three cutting 
parameters were selected from the above ones, serving as 
the basis of the ANN-based chip form classification. 
Parameters often selected: e.g. average, distribution and 
power of the force signal components, etc., as enumerated in 
the next paragraph. 

All the analyzed classification tasks were divided into 
two subtasks: 
• The first subtask takes some of the best features resulted 

from the feature selection technique as model inputs. 
• The second subtask has the same input parameters as 

the first one, extended with the three main cutting 
parameters (speed, feed, depth of cut). 

 
6. CLASSIFICATION SUCCESS 

 
Selected features extended with the three main cutting 

parameters in some cases formed the inputs and chip form 
classes were the output parameters of the applied ANN 
model. 

The difference between the recognition rates resulting 
from the training and testing phases of the ANN applied in a 
classification assignment was minimized to ensure modeling 
generalization. The relative limited amount of cutting 
experiments and, consequently, of data vectors explains this 
method, because there were not too many data to form two 
separated, large data set for training and testing. 

Significant differences derived from the classification 
power of the models in the different assignments, as below: 
1. Classes to be identified: ribbon, tubular, spiral, washer-

type, conical-helical, arc 
The best features were:  

• signal power of force component Fy, 
• average of force component Fy, 
• minimum value of force component Fy, during the 

measurement, 
• maximum value of force component Fz, during the 

measurement, 
• maximum value of force component Fy, during the 

measurement, 
• signal power of force component Fz, 
• average of force component Fz, 
• minimum value of force component Fz, during the 

measurement, 
• standard deviation of the whole force vector 

(containing all three components) 
• signal power of the whole force vector, 
• average of the whole force vector, 
• standard deviation of the vector formed by the y 

and the z directions of the force components, 
The recognition rate in classification was as follows: 

• using the above features as input parameters: 69%, 
• using the above features as inputs but changing 

the last three features by the three main cutting 
parameters (speed, feed, depth of cut): 80%. 

2. Classes to be identified: long, short, snarled 
The best features were:  

• cutting speed, 
• average of force component Fx, divided by the 

product of feed and depth of cut, 
• third central moment of force component Fz, 
• third central moment of the measured power 

signal, 
• maximum value of force component Fx, divided 

by its standard deviation, 
• minimum value of force component Fx, divided by 

its standard deviation, 
• third central moment of the vector formed by the y 

and the z directions of force components, 
• third central moment of the whole force vector, 
• Skewness of force component Fx, 
• third central moment of force component Fy, 
• mean of force signal Fx quadratic values, 
• deviation of the whole force vector. 

The recognition rate in classification was as follows: 
• using the above features as input parameters: 63%, 
• using the above features as inputs extended with 

two further cutting parameters (feed, depth of cut): 
68%. 

3. Classes to be identified: ribbon_long, ribbon_snarled, 
tubular_long, tubular_short, tubular_snarled, spiral_flat, 
spiral_conical, washer-type_long, washer-type_short, 
washer-type_snarled, conical_long, conical_short, 
arc_connected, arc_loose 
The best features were:  

• cutting speed, 
• temperature, 
• minimum value of force signal Fy, 
• power of force signal Fy, 
• average of force signal Fy, 
• maximum value of force component Fz, 
• power of force signal Fz, 
• average of force component Fz, 
• minimum value of force signal Fz, 

The recognition rate in classification was as follows: 
• using the above features as input parameters: 63%, 
• using the above features as inputs extended with 

two further cutting parameters (feed, depth of cut): 
63%. 

4. Classes to be identified: flat, short, snarled, long, conical, 
connected, loose 
The best features were:  

• maximum of force signal Fz, 
• power of force component Fz, 
• average of force component Fz, 
• minimum of force signal Fz, 
• standard deviation of the whole force vector, 
• power of the whole force vector, 
• average of the whole force vector, 
• power of force vector component Fy, 
• average of force vector component Fy, 
• minimum of force signal Fy, 
• maximum of force signal Fy, 



• standard deviation of the vector formed by the y 
and the z directions of the force components, 

• power of the same force vector component as 
above, 

• average of the same force vector component as 
above. 

The recognition rate in classification was as follows: 
• using the above features as input parameters: 63%, 
• using the above features as inputs extended with 

the above appointed cutting parameters: 52%. 
5. Classes to be identified: good, acceptable, dangers 

The best features were:  
• cutting speed, 
• average of force component Fx, divided by the 

product of feed and depth of cut, 
• third central moment of force component Fz, 
• maximum value of force component Fx, divided 

by its standard deviation, 
• minimum value of force component Fx, divided by 

its standard deviation, 
• third central moment of the measured power 

signal, 
• third central moment of the vector formed by the y 

and the z directions of the force components, 
• Skewness of force vector Fx, 
• third central moment of the Fy force vector, 
• third central moment of the whole force vector, 
• Skewness of the measured power signal, 
• Mean of force signal Fx quadratic values 

The recognition rate in classification was as follows: 
• using the above features as input parameters: 63% 
• using the above features as inputs extending with 

the missing, above appointed cutting parameters: 
73% 

Recognition rates are difficult to compare due to the 
differences between the numbers of classes in the different 
assignments. The same amount of data vectors was applied 
for training and testing in the given assignments, 
consequently, the reliability of the recognition rate is higher 
in the case of fewer classes. 

 
7. CONCLUSION 

 
The paper illustrated an ANN-based method for 

identifying the cutting chip form. Continuously increasing 
material removal rate and flexible automation tools, without 
active human supervision can be experienced as a trend also 
in metal cutting industry. Monitoring the chip breaking 
process is one of the important factors for automated 
supervision.  

A large number of parameters of machine setting, direct 
measurement values and the calculated factors of typical 
monitoring signals were applied as the basis information set 
for determination of the cutting chip form. Numerous 
experimental tests were performed to collect real 
measurement data for building up and testing ANN models 
for classification. A frequently used feature selection 
method was applied to pre-select the most important 
features. The chips of the experiments were collected and 

coded by using the relevant ISO standard. Five classification 
assignments were formed and their recognition ratios were 
reported on above. Beyond these research results, new 
techniques [5][7] allow that the generated ANN models may 
ensure the basis for determining machine settings and 
tolerances for monitoring parameters in order to get a pre-
selected chip form for serving cutting efficiency, economic 
or environmental aspects. This technique is applied in other 
production-modeling fields, e.g., in lamp manufacturing 
industry [8]. Another future extension of research is to 
perform similar experiments, by using monitoring data in a 
certain time-window of the cutting process to move towards 
on-line supervising and control. 
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