
AI-METH 2005 - Artificial Intelligence Methods November 16–18, 2005, Gliwice, Poland

AI techniques in modelling, assignment, problem solving and optimisation∗

Zsolt János Viharos
Zsolt Kemény
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Abstract

This paper recapitulates the results of a long research of a family of AI methods—relying on, e. g., artificial neural networks
and search techniques—for handling systems with high complexity, high number of parameters whose input or output nature is
partly unknown, high number of dependencies, as well as uncertainty and incomplete measurement data. Aside from classical
modelling, basic problem solving and optimization techniques are presented. Finally, a novel submodel decomposition method
is shown with an extended feature selection algorithm highlighted, along with possibilities of further development. Examples
of practical application are shown to illustrate the viability of the methods.
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1. Introduction

Nowadays, many areas of practical science and technology

face systems with high complexity and notable uncertainty

whose handling requires efficient methods for learning the sys-

tem’s properties and dependencies and depositing this knowl-

edge in a flexible, reusable form which can be easily recon-

figured for various interpretations. While these tasks are al-

ready demanding themselves, even the systems to be handled

impose many challenges:

A high number of parameters. For complex systems

consisting of many—more or less identifiable—components,

such as production lines, biochemical processes etc., it is quite

natural that a large number of parameters is required for their

adequate description. While some of these systems or phe-

nomena allow simple and uniform handling of some groups of

parameters (it is enough to think of finite element methods),

this cannot be easily done in a significant number of other

problems (see Fig. 1).

A high number of dependencies. Are several compo-

nents integrated into one system, the number of dependencies

to be modelled quickly increases, as numerous new relations

are added to those inherent to the subsystems (see Fig. 1).

However, not only the high number of actually existing de-

pendencies would require vast resources, but also the even

higher number of potential dependencies, i. e., assumptions

which have to be either verified or rejected during modelling,

calling for an efficient way of pruning superfluous relations.

Uncertainty of measurement data. The first step of

gathering knowledge about physical systems is measurement

which also introduces noise and data uncertainty. Aside from

the measurement data themselves, it is thus important to
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know the expected tolerances for both measurement and re-

production in a subsequent simulation.

Incomplete information. Somewhat related to measure-

ment data uncertainty is the partial availability of informa-

tion which practically means that some vectors of measured

data are obtained with some of their elements missing (either

due to sensor malfunction or because at the given point of

the measuring process, the given data element would have no

sensible meaning [6]) or totally invalid. In some cases, dis-

carding these incomplete vectors would be unpracticable as

they make up a substantial part of all measured data. There-

fore, a method is needed which can handle incomplete data

sets.

Unknown input/output character of parameters.

Are data collected at various measurement points and labeled

as relevant parameters, it is, in many cases, still not clear

whether they are to be regarded as an input or an output in

some relation. The input/output nature of a parameter may

either be determined by the given problem to be solved or

the given point of view of modelling (and may thus be dif-

ferent for another problem), or it may be entirely unknown if

a-priori knowledge about the system is sparse.

To overcome these difficulties, a flexible approach is needed

which can reuse knowledge already acquired for a given in-

put/output arrangement. Also, since complex systems show

notable similarity with respect to the above mentioned prop-

erties, one may be encouraged to reuse methods—elaborated

for one type of complex systems—for various other cases after

performing reworking or fine-tuning as needed.

The range of problems stated above is a natural terrain

for various AI approaches. In this paper, a family of methods

based on artificial neural networks (ANNs) is presented which

was successfully applied in several industrial examples. First,

classical modelling is addressed, including handling missing

data, uncertainties and unknown input/output arrangement.

Hereafter, basic problem solving and optimization techniques

are presented, and finally, a novel submodel decomposition

method is shown, along with possibilities of further develop-

ment.
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Fig. 1. A practical example for complexity: key interdepen-
dencies for a cutting process [1]. Each basic node may contain
numerous parameters—the total number of variables can eas-
ily go into the hundreds for such industrial processes.

2. Classical modelling

Is sufficient measurement information available, the first step
towards handling a system is the creation of an adequate
model. This is essential for setting up planning, control or
prediction methods, as well as for testing and validating them
in a simulation environment before practical application. In
numerous cases, one is facing nonlinear relations which may
contain significant uncertainty and may even change over
a longer time. In these cases, the limits of conventional
methods—as differential equations or simple function fitting
and interpolation—are quickly reached while artificial intelli-
gence (AI) techniques, as demonstrated by many cases over
the past decade, are still able to deal with these modelling
tasks.

In a number of cases, artificial neural networks are used for
modelling complex nonlinear relations, as they can easily han-
dle strong nonlinearities, a large number of parameters and
missing data, furthermore, they can adapt to changes occur-
ring in the modeled system or process [2]. In its classical
way of application, the layout of an ANN is largely prede-
termined by the fixed classification of variables as inputs or
outputs, yet aside from this, no assumptions about the ap-
proximated function are taken into consideration. Having set
up a network topology, learning and test patterns compiled
from measurement data are presented to the network, finally,
the knowledge stored in the ANN can be recalled using only
predetermined inputs as inputs and obtaining the results at
the predetermined outputs. There are, however, four require-
ments which appear in modelling large and complex systems
and render the conventional use of ANNs inefficient:

1. Non-invertible functions are not guaranteed to be suc-
cessfully modelled wit ANNs in their conventional layout.
Most often, this is due to the fact that the input/output
assignment of variables was done in advance of training,
with insufficient knowledge about the given relation’s na-
ture. This may become a trap, since ANNs are typically
applied exactly when there is little known about the func-
tion and its general type as well.

Fig. 2. Protected (dotted) and unprotected (solid) states of
different neurons and corresponding weights

2. If several ANN models are concatenated to obtain a given
result, approximation errors may increase beyond accept-
able bounds at the last output layer. Coupling conven-
tional ANNs may only be safe if their accuracy is guar-
anteed to lie within specified limits. (Note that a useful
approach was proposed by Ghiassi et al. [3] where an ini-
tial neural network is augmented by further nonlinearities
and additional layers if accuracy deteriorates beyond a
given bound.)

3. Even for the same system, a wide scope of problems may
exist. These are related to the same system—which sug-
gests that their solution can rely on the same knowledge—
but in the classical approach, each of them would require
separate ANNs, each having its own specific input/output
configuration.

4. Since obtaining knowledge about a complex system is
cumbersome and demands large computational efforts.
Therefore, such knowledge should be stored in a reusable
form—this is, however, hardly possible with the rigid con-
figuration of a classical ANN.

These difficulties can be overcome if a generic, reusable
ANN-based model is compiled—exactly this strategy is fol-
lowed by the approach of Viharos et al. [10]. Prior to ap-
plying this method, a sufficiently large set of training pat-
terns must be given, with allowable estimation tolerances as-
signed to each component of the learning vectors. At this
stage, it is not necessary to know the input/output assign-
ment of the components, as the algorithm will find the best
configuration automatically. Performing a complete search
of all possible configurations would be too slow, therefore,
a heuristic method, sequential forward selection is used [7].
Here, a possible output candidate is selected and the learn-
ing performance (learning speed and accuracy) of the ANN is
monitored, keeping allowable tolerances of the given param-
eter in mind. Should the training of the ANN for a given
input/output arrangement succeed, the selected variable be-
comes eligible for being an output. Once a variable is val-
idated as an output, further output candidates are selected
and checked until the highest number of outputs is found.This
automatic search can also detect non-invertible relations, as
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Fig. 3. Steps of problem statement, modelling and problem solving for the classical use of ANNs (left) and the task-
independent generic ANN model (right)

in their case, training the input/output arrangement corre-
sponding to their inverse fails. An important characteristic of
the method is the unchanging topology of the network where,
as shown in Fig. 2, unused neurons and links are not deleted
but only protected from being altered during learning.

A similar treatment is applied when incomplete data sets
are encountered. While numerous methods paste up missing
components in training and test data by interpolation, the
concept of Viharos et al. does not make this necessary. Here,
weights corresponding to missing data are protected and re-
main omitted by the given learning step. As a result (see
[10]), this is suitable for handling incomplete data. Interest-
ingly, “impaired” training vectors often bring better learning
results if data vectors to be learned contain redundant infor-
mation.

3. Problem solving

Having once assembled the general, multi-purpose ANN-
based model as described above, it can be used to solve a
wide variety of problems, independent of the input/output ar-
rangement which may vary from task to task. The key to the
model’s versatility arises, aside from the fact that it is among
the best models attainable with an ANN of a given size and
topology, from the possibility of both direct and indirect use.
In any application of the general model, unknown parameters
are estimated using known ones, three cases being possible:

• Classical approach—Here, exactly those parameters are
unknown which are outputs of the ANN containing the
general model. In this case, the use is straightforward:
known parameters are fed into the ANN whose outputs
directly deliver the unknown ones.

• Inverse approach—Here, unknown parameters coincide
with the input variables of the ANN. In this case, an iter-
ative search finds a set of inputs approaching the desired
(known) output to a prescribed degree. This method is
also suitable for non-invertible relations.

• General use—A some of the unknown parameters are
outputs of the ANN while others are inputs. In this case,

known inputs are fed straight into the ANN while the rest
of the task is again performed via iterative search.

Should an indirect, iterative search be needed, the solution
is sought in compliance with the following three constraints
(the fourth one being the relations of the model itself):

• Condition regarding known output parameters—
complying with this constraint ensures that a valid solu-
tion estimates known output parameters by forward cal-
culation within specified bounds of estimation error.

• Condition regarding unknown input parameters—
this is determined by the valid domain of inputs of the
ANN model which is assumed to be covered by the set of
training data.

• Condition regarding unknown output parameters—
determined by the valid range of the ANN’s output, a
prospective solution is only accepted if the unknown
output remains in this acceptable range.

In [9], examples from industrial production show the role of a
proper input-output search in picking out non-invertible rela-
tions to learn them the correct way. Should a non-invertible
relation be encountered, learning it imposes no hindrance to
a correctly configured ANN, however, the non-invertible na-
ture does show in the high number of solutions found in an
indirect problem solution process.

4. Optimization

Is the solution to the problem, e. g., due to non-invertible de-
pendencies, not unique, an additional criterion can be used
to pick an optimal solution from the set of possible ones. In
this case, it would be straightforward to let the aforemen-
tioned requirements still act as constraints and the secondary
preference act as a criterion to be optimized during search.
Experience, however, has shown that it is more advantageous
to loosen the constraints and handle them as criteria with
weights varying during subsequent optimization steps. The
solution found this way is then expected to optimize the sec-
ondary preferences to the best possible degree while it is still
in keeping with the constraints within an agreeable distance.
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An application example of iterative optimization with such
constraints is shown by Viharos et al. [8] where simulated an-
nealing is used to obtain a set of valid solutions to manufac-
turing problems. Also, the technique initially applied to only
one production step is extended in [8] to a higher level of
production: The block-oriented ProcessManager framework
presented in [8] can deal with an entire process chain where
the result of an earlier step may influence all subsequent steps.

5. Submodel decomposition

Highly complex systems imply models which—due to the
high number of parameters and the dense network of
interrelations—can be handled as a whole only at staggering
computational costs. It is thus advantageous to decompose
these complex models to several smaller interconnected sub-
models which can be easily handled one by one (moreover, we
can always select the set of submodels relevant to the given
problem, so that submodel decomposition results in subtask
decomposition as well). For this purpose, a submodel find-
ing approach combining feature selection and artificial neural
networks—a culmination of the ANN-based techniques pre-
sented before—was developed by Viharos [11, 12]. The appli-
cation of the algorithm has two main prerequisites:

• A data set of sufficient size has to be supplied, e. g., in form
of a database table where columns represent the variables
to describe the system and each row stands for these vari-
ables recorded at a given time.

• Since in subsequent parts of the algorithm, an artificial
neural network is employed to test whether a given vari-
able can be estimated using other parameters, a maximal
tolerable error has to be assigned to each variable when
estimating it with an ANN model.

Having fulfilled these requirements, an algorithm can be run
which uses ANN’s to validate proposed submodels. In the
most “conventional” case, the assignment of potential inputs
and outputs as well as the isolation of proposed submodel
structures is done in a separate block, prior to any ANN
training, as proposed by earlier approaches (e. g., Caelli et
al. [5]). Departing from this rigid setup, one can allow the
structure of the interconnected submodels to be determined
dynamically during learning.

The novel method presented in [12] allows the flexible con-
figuration of submodels, as well as free assignment of a given
variable for input or output. As shown before, the highest
number of outputs is selected in an input/output search based
on ANN learning performance. However, attempting to learn
a potential output by an ANN can only signalize that there
is a dependency “somewhere within the set of selected vari-
ables” but cannot weed out parameters totally independent
of the given subsystem. This would result in a single ANN
struggling to learn the entire structure in question, therefore,
the reduction to smaller, easy-to-handle submodels must be
cared for by other means. While the vast majority of such ap-
proaches determines the submodel structures before any ANN
training takes place, this new method identifies the submodel
structures dynamically, leaning on the results of earlier ANN
training periods.

This is accomplished by an extended feature selection
algorithm—developed by Viharos et al.—running on the com-
plete set of variables and setting up a decision tree for sub-
model selection.

The extended feature selection algorithm applied here as-
sumes a pure classification task, onto which even continuous
parameters can be mapped with an appropriate heuristics.
In the first step, a given parameter is selected and its values
encountered in the training data set are grouped into clusters
(i. e., intervals of equal length), so that at least one element
is contained in each interval (this, in itself, being the first
heuristic decision). Next, the algorithm checks how “distinct”
these clusters are, i. e., how far apart the weight centers of the
clusters are and how large the distances of the cluster weight
center and the cluster’s discrete points are. This test is per-
formed for all parameters that can come in question, then,
the one exhibiting the most “distinct” clustering of values is
chosen.

Having selected the first parameter of interest, all remain-
ing variables are tested again, each of them together with the
already highlighted parameter, for the same measure of class
distinctness, using Euclidean distances. Again, the param-
eter chosen to form a potential submodel together with the
first preferred variable, will be the one exhibiting the best
class separability together with the parameter already selected
in the first run. In every subsequent step, yet another un-
selected variable is tested the same way, and in every case,
the one corresponding to best class separation is chosen (note
that this incremental selection, as opposed to a combinator-
ically exhaustive test, is the second heuristic decision in the
algorithm’s layout).

Adding new parameters to the ones already selected, a de-
terioration of class separability can be observed which is guar-
anteed to be worst when all variables are taken for classifica-
tion. However, since our goal is the creation of submodels,
each containing only a relevant part of the model’s entire pa-
rameter set, a suitable heuristics (the third such case in the
algorithm) should be used to decide when adding new pa-
rameters should be stopped. By selecting only a part of the
model’s entire parameter set as the best performing variable
group for one given clustering, we have created a candidate
for a submodel.

Since three heuristic decision steps were taken to obtain
the candidate submodel, this can be considered only an as-
sumption which is to be either verified or rejected by the
ANN algorithm. The latter begins validating a given part
of the submodel structure—at a given point in the decision
tree—and delivers first training results. Examining these and
removing the successfully learned submodel from the “pool”
of unclassified variables, feature selection is run again on the
remaining data set and the decision tree is reconfigured if
needed. Hereafter, ANN training takes place again. Thus,
the method does not separate preselection and ANN train-
ing into disjoint tasks—in fact, feature selection and training
complement each other with their alternate execution until all
submodels are identified and learned.

Having completed the decomposition, the following results
are obtained (see also Fig. 4):

• A set of valid submodels, each containing a minimal set
of the system’s parameters with as many of them labeled
as output as the ANN algorithm could find.

• A set of rejected submodels. These were originally pro-
posed as submodels by the feature selection procedure but
were judged invalid by the ANN algorithm. Storing these
discarded patterns is useful for an early pruning of sub-
model candidates bound to fail.
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Fig. 4. Two cases of submodel decomposition. In the example to the left, the net of accepted submodels consists of five main
relations (in brackets), partitioning a system containing eleven description parameters. The fourth row in the window, e. g.,
shows that the algorithm identified a submodel with parameters 2, 3 and 6 as inputs for the estimation of output 5. The
four identified submodels have common parameters, e. g., parameter 6 is estimated by the submodel shown in the second
row, but it is to be found among the input variables of the next two submodels, too. Thus, a structure of interconnected
submodels can be recognized additionally to the identification of its individual parts. To the right, the result of submodel
decomposition in an industrial example with a large number of system parameters is shown.

• Since the valid submodels were spotted while ANN’s were
learning their parameter dependencies, this knowledge is
readily accessible and applicable for problem solving as a
network separate neural nets, each of them representing
one submodel.

Fig. 4 shows a screenshot of an actual industrial application
in a rather low level of manufacturing where a production
line is modelled using more than sixty parameters. In [11],
another industrial application is shown for an intermediate
level of production.

6. Further research

Currently ongoing research activities are aimed at extending
submodel decomposition towards the framework of a multi-
agent system (MAS) where knowledge specific to an agent is
mapped onto a given submodel. The feasibility of this gener-
alisation is assumed because of remarkable analogies between
ANN- based submodels and agents:

1. Autonomy—a) Decomposition is present in a network of
submodels, as well as in MAS. b) Both submodels and
agents represent localized knowledge with direct informa-
tion exchange links only leading to its connective neigh-
borhood.

2. Architecture—Composite models and MAS both have
a network architecture.

3. Adaptivity and proactivity—a) An elementary prop-
erty of ANN’s is their learning ability, also required for
autonomous agents in a time-varying environment. b) Es-
timation using locally available information, an inherent
feature of submodel ANN’s, is analogous to agents judg-
ing the expected outcome of their own actions, as well as
the anticipated changes in the near future.

It can be thus assumed that submodel decomposition can be
a basis for automatic agent formation in a MAS, submodel

groups being the specific knowledge of the agents. An im-
portant goal of such an initial agent formation is to break—
at least partly—with the traditional practice of a rigid agent
structure and allow free agent formation according to a given
criterion.

Prior to specific research activities, following crucial ques-
tions must be examined:

1. What criteria should lead one when taking groups of rela-
tions for an agent’s specific knowledge? The key concerns
are maximal foreseeing and learning abilities of agents.
The requirement of acceptable global operating costs will
later need further criteria, though this was so far only
treated as a side effect in MAS (e. g., in [4]).

2. How should learning data be grouped to express time-
dependency correctly? Experiments may provide hints,
but specific technical knowledge (changeover time or tim-
ing for one given workpiece) is expected to provide the
first starting point.

While this initial agent formation may bring interesting re-
sults, the most important advantage expected is the run-time
adaptation of the system’s composition, the agents being re-
configured by the reorganization of the underlying submodels.
To this end, each agent is constantly monitoring its own per-
formance (the ratio of right and wrong decisions, the gain of
bids won etc.). Difficulties can be handled by the following
steps:

1. First, the agent attempts to re-learn the deficient task,
using recent training data, while inter-agent activities re-
main the same as in a conventional setup (Fig. 5).

2a Upon failure of re-training, the agent shares the unsolved
problem with its neighbors and monitors them until it
shows best (or agreeable) performance again (Fig. 6).

2b Should a neighboring agent constantly perform better,
the problem submodel in question can be relocated to
it, along with the associated decision rights. This may
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Fig. 5. Elements of conventional agent communication

Fig. 6. Sharing an unsolved problem with other agents of the
neighborhood

Fig. 7. Transferring knowledge and decision rights

increase communication, yet the quality of decisions im-
proves (possibly due to the new host of the task having
better access to vital information). Relocation cost met-
rics can show if reassigning a given task improves total
system performance (Fig. 7).

Two AI paradigms can be recognized here: reinforcement
learning and distributed AI, several local blackboards being
pivot points for reconfiguration. Experience in these domains
provides hints, yet only actual tests can show how much—if
any—supervision is needed to keep certain bounds, e. g., hu-
man understandability or stability. Dynamic reconfiguration
introduces a new facet of agent communication: in addition
to communicating decisions, bids, possibilities or parameters,
agents would now transfer decision rights and the correspond-
ing knowledge, as well as protocols and knowledge topics, re-
quiring a new mode of communication, new protocols and
new contents.

7. Conclusion

The first part of this paper highlighted fundamental phenom-
ena encountered in highly complex physical systems (high
number of parameters, high number of dependencies, un-
certainty of measured data, incomplete information and un-
known input/output arrangement of parameters). To handle
these in various types of problems, a family of ANN-based
methods was presented (classical modelling, problem solv-
ing, optimization and submodel decomposition) which can
be equally applied in lower and higher hierarchical levels of

production. Their versatile applicability was demonstrated
by examples of practical use in manufacturing systems. Fi-
nally plans for future research were proposed where submodel
decomposition will be used as a starting point for a flexible,
reconfigurable multi-agent system.
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