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ABSTRACT 
The paper introduces a new approach for automatic plant 
decomposition, based on artificial intelligence (AI) techniques. A 
novel automatic solution, based on a generalized feature selection 
technique and on artificial neural network (ANN) training, was 
developed by the author. The main goal is to explore connections 
among parameters of a given database, and based on the modelled 
dependency sets, validated groups of parameters can form individual 
parts of the analysed system. Applying this technique to a production 
database containing data typically inherited from the shop-floor level 
through process monitoring systems (or based on virtual simulation 
models) results in groups of connected production parameters. 
Consequently, it allows decomposing a running or simulated 
manufacturing system into smaller, individual and autonomous 
components. Therefore, the approach can provide the basis for 
production system decomposition and reconfiguration, too.  
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1. INTRODUCTION 
Reliable process models are of key importance in computer integrated 
manufacturing (Merchant, 1998) as model-based solutions can make difficult 
problems of production control tractable. Increasing complexity is another 
characteristics which shows up in production processes, systems and in enterprise 
structures as well. Models facilitate elaborating new algorithms, supporting 
decisions, decreasing investment risks and coping with changes and disturbances. 
However, modelling manufacturing processes may bear difficulties: the diversity of 
operations, their multidimensional, nonlinear and stochastic nature, partially 
understood relations, unreliable or incomplete data sets etc. Often, the only feasible 
approach is the decomposition of the model into several smaller interconnected 
sub-models—though not equal to problem decomposition, but is one of the first 
steps towards it. 

Learning denotes changes in the system adaptive in the sense that learning 
techniques enable the system to do the same or similar task more effectively next 
time. Artificial neural networks (ANNs) are general, multivariable, nonlinear 
estimators. This artificial intelligence (AI) technique can offer viable solutions, 
especially for problems where abilities for real-time functioning, uncertainty 
handling, sensor integration, and learning are essential features.  

After highlighting some methods to decompose production systems, the current 
state-of-the-art in the structure determination of artificial neural network systems is 
presented, followed by the description of the sub-model exploration algorithm, and 
its positioning. Two applications for high- and low-levels of production control are 
explained for illustrating the applicability of the proposed method for decomposing 
production systems, e.g., plants. Highlighting some issues and further improvement 
fields is necessary to facilitate new ideas for researchers. Conclusions, 
acknowledgement and references close the paper. 

2. PRODUCTION SYSTEM DECOMPOSITION AND 
RECONFIGURATION METHODS 
Various approaches for decomposing production systems can be found in the 
literature, this paragraph highlights some examples only. Production system model 
is built up from two fixed elements, puffers and machines, while these elements 
can have various states and state transition processes (Colledani and Tolio, 2005).  
The structuring prescribed allows calculating system performance parameters, e.g. 
throughput, availability, etc., by using Markov computation techniques. An 
extension of IEC (International Electrotechnical Commission) 61499, standard on 
function blocks was introduced to allow a function block-oriented reconfiguration 
of factories (Olsen et al., 2005). Typical reconfiguration cases, prescribed from this 
stage on (e.g. failure of the controller, introduction of new processes), are ordered 
to function blocks. Self-reconfiguration of modular robots is set-up where the robot 
itself can adapt its prescribed configuration containing specific elements to execute 
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uncommon tasks (Lau et al., 2008). The approach is based on agent techniques for 
solving the problem of distributed capacity allocation in manufacturing systems 
(Bruccoleri et al., 2005). The paper presents a valuable table about typical planning 
issues, decision makers and planning mechanisms in five different levels and 
horizons of production planning. The paper, together with the above enumerated 
ones, illustrates excellent examples for various kinds of production system 
decomposition elements and reconfiguration methods. A similarity among the 
methods is that the applied system elements are static and prescribed according to 
some traditional or modelling rules. This is typical also in building up production 
simulation systems (Monostori and Viharos, 2001). A promising technique is 
served by the approach of lean manufacturing where the elements of a 
manufacturing cell (machine, puffer, and material movement equipments) are 
typically prescribed but the number of sequential machines and stations involved 
are determined and calculated based on the customer’s beat, so in this point of 
view, this approach gives a partly dynamic solution.  

The paper introduces a different approach where only the parameters describing 
a production system are fixed but the elements inherited from groups of parameters 
of the decomposed manufacturing architecture are determined dynamically during 
decomposition. 

3. STRUCTURES OF ARTIFICIAL NEURAL NETWORK MODELS 
The description of various structure determination techniques is important for 
illustrating the position of the introduced ANN based model decomposition 
algorithm, moreover, it is probably more important to help facilitate new system 
(re)configuration techniques in production management. 

Various approaches can be found for improving the structure of ANN models in 
the literature e.g., in the case of MLPs, too. Mainly two types of techniques are 
used for preparing the net of ANN models. In the first type the structure is pre-
determined before the learning, consequently, it is not mainly based on the data set 
available, but the structure is defined typically according to some tasks of the given 
application field. The second group of neural network structure building techniques 
is applied during the learning phase, since, they are based on the explored 
dependencies in the analysed database. The following paragraphs describe typical 
solutions for structure determination of ANNs. Mainly publications the first ideas 
coming first in various fields are enumerated together with some basic features of 
the solutions. 

3.1. PRE-DETERMINED STRUCTURES 
The first group of pre-determined neural network structures relates to hierarchical 
modelling, but the second one combines, in various ways, similar equivalent sub-
networks. 
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3.1.1. Hierarchical, pre-determined structures 
A fixed, three-level hierarchical neural network system is presented (Ding and 
Yue, 2004) recognizing workpiece features. The hierarchy is organized according 
to a special engineering approach regarding the recognition task. Path algebra is 
used for building up hierarchical model(s) to describe a complex system (Gentila 
and Montmain, 2004). The approach requires human-machine interaction to drive 
the model development in the direction of the given analysis. The paper highlights 
also other interesting ideas, e.g., understanding system’s behaviour is an important 
requirement for supervision and is, generally, opposed to accuracy. It is also 
identified that hierarchical decomposition by refining models into components is 
crucial for managing complexity. A two-level hierarchy network for learning 
trajectory distribution patterns is initiated (Hu et al., 1997) where an internal net 
can be considered as a "big neuron" and the relationships are defined by 
neighbourhoods. Special sub-tasks, such as filtering, orientation extraction or 
filling-in in the field of texture processing determined the components of the 
hierarchical, artificial neural network based evaluation tool (Van Hulle and 
Tollenaere, 1993). Several possible hierarchies in neural network structures are 
shown (Kung et al., 1999) and were combined with fuzzy techniques. Contour 
orientation detection, decision making to alter the gradient magnitude and adjusting 
the direction of the edge element were the tree sub-tasks for edge enhancements 
that initiated the hierarchical structure incorporating three neural networks (Lu and 
Szeto, 1993). Frames were defined in a picture called texture window, based on 
field-specific targets to find similar regions in it (Goltsev, 1996). Neural network 
models were ordered to the defined regions and all sub-networks are incorporated 
into a single network by a neural activity control system. A very interesting 
comparison between mathematical techniques and artificial neural networks was 
described (Watanabe, 2001). It was presented that almost all homogeneous and 
hierarchical learning machines have singularities in their parameter space resulting 
in having no mathematical foundation to analyse their learning. Also the essential 
difference between the regular statistical models and artificial neural networks was 
given. 

3.1.2. Non-hierarchical, pre-determined structures 
To decrease the error of a system similar neural network models are used (Hashem, 
1997; Tetko and Villa, 1997) for reaching the optimal combination of their outputs 
by applying correlation coefficients to measure the similarity between the cases 
from a domain. The weighted sum of pre-determined neural network model outputs 
another estimation technique combining several models at the same time (Wolperta 
and Kawato, 1998). Another interesting feature of their motor control solution is 
that they prepared forward and also backward models, however, these models have 
to incorporate the same dependencies among parameters. It was referred to that this 
symptom was recognized in the cerebellum. 
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3.2. SELF-DETERMINING STRUCTURES 
This group of techniques for building neural network structures is applied during 
the learning phase, incorporating two sub-solutions: first, constructive building 
with growing the ANN structure, e.g., adding neurons and/or links to a momentary 
model during training, second, prunning is typical opposite solution with removing 
links and/or neurons, usually, to improve the accuracy and the learning speed. 

Decision trees and neural network models were combined (Basak, 2004) in a 
way that ANNS are located in the branches of the decision tree model allowing to 
build up a hybrid model with an integrated learning technique. Also a tree 
combined with neural networks resulted in the self generating network of networks 
presented (Caelli et al., 1999). The paper shows various modular neural network 
based solutions, applications and it highlights the important aspect that neurons in 
human brain are very sparsely connected. Exploring independency among 
parameters in the neural network structure moves the model in this direction 
(Yasui, 1997). A constraint-based decomposition (CBD) training architecture was 
introduced (Draghici, 2001) with the corn idea behind to reduce the dimensionality 
of the search space through decomposing the problem into sub-problems using sub-
goals and constraints defined in the problem space. The number of neural nodes is 
prescribed by four in one layer. There exist a node for fixed value, another node for 
linear mapping and two nodes for non-linear dependencies. The number of layers 
varies in a dynamic architecture (Ghiassi and Saidane, 2005). They also 
highlighted that for a class of problems (in their case for electrical load forecasting) 
a desired level of accuracy is often prescribed. Also a practical aspect of easy 
hardware realization was the motivation for ordering neural nodes and partly 
networks into hierarchy (Mason and Robertson, 1995). Similarly to one of the 
motivations of the model building algorithm presented in the paper, non-invertible 
and multi-value dependencies have to be handled by the introduced partitioning 
system (Gock and Katupitiya, 2005). Sequential Forward Search (SFS) was an 
applied technique for selecting output parameters (Guan et al., 2005) describing 
also that connected sub-models work better than one comprehensive model. 

4. ANN BASED DECOMPOSITION 
The ANN based decomposition method is introduced in the next paragraph; it is 
illustrated by the user point of view. Because of the great variety of manufacturing 
description parameters, it is very difficult to build up a comprehensive model, e.g., 
for a production process even if a part of the whole system is modelled. Identifying 
parts which can be modelled independently is one of the main issues of modelling. 
A very important goal of research is to automatically determine individual parts 
like this, based on the given parameters and artificial neural network models. This 
paragraph describes the algorithm from the user’s point of view. 

The application of the algorithm has two main prerequisites: 
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• The user has to provide a set of data describing the analysed system. This can 
be satisfied typically with a database table where columns are the description 
variables and the rows contain their values belonging together. Various settings 
of these features allow different analysis of the same system. 

• A further prerequisite of the application is the setting of allowed, excepted 
errors or required estimation accuracy for all of the system variables. This 
requirement is inherited from the ANN based learning technique. One has to 
define when to stop a learning process. Implicitly, the user defines the level of 
estimation accuracy, or the error allowed. This setting differs from parameter 
to parameter but it has to be determined before algorithmic run, consequently, 
in some respect, it is an advantage, but in other respect, it is a disadvantage of 
the solution. Repeated run with various accuracy requirements can mirror the 
variety of solutions in respect to this prerequisite. It is worth mentioning also 
that based on some ideas, of the authors, the settings of the accuracy is one of 
the main domains for further improvement of the method. 

Satisfying the above requirement allows to run the developed algorithm. The 
results can be grouped into three main parts: 
• Net of accepted sub-models. They can perform the estimation of their output 

parameters with the prescribed, individual accuracy. They can have common 
parameters; consequently, the result is a net of neural networks.  

• List of rejected sub-models. These models were analysed during the search but 
they were rejected. A model is accepted if at least one of their parameters can 
be estimated with the prescribed accuracy, based on the remaining ones.  

• Because models are identified through their building up process, the algorithm 
results also in the concrete neural network models for each of the accepted sub-
models. This allows the prompt application of the whole, or a part of the net of 
sub-models for solving various assignments. 
 Figure-1 shows an example of a resulted net of accepted sub-models with 

five parts (in brackets), decomposing a system which contains eleven (indexed 
from zero to ten) description parameters. The fourth row of the demonstrated 
software window shows that the algorithm identified a sub-model where 
parameters no. 2, 3 and 6 as model inputs are able to estimate the variable no. 5. 
The four identified sub-models have common parameters, e.g., parameter no. 6 is 
estimated by the sub-model showed in the second row, but it is to be found among 
the input variables of the next two sub-models, too, showing that this technique 
recognises a structure of connected sub-models, over the identification of its 
individual parts. 
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Figure-1: The resulted sub-model structure of a complex system 

5. POSITIONING THE INTRODUCED ALGORITHM 
This paragraph aims at positioning the introduced algorithm for finding sub-
models. Various aspects can be enumerated when specifying the place of a 
modelling and model building technique, only a part, considered especially 
important, is mentioned. 

According to the core modelling technique, the solution is based on neural 
networks. Multi-Layer Perceptron (MLP) ANN models are used exclusively, 
mirroring the position of the technique among the wide range of neural network 
types. 

The training algorithm is based on an accelerated backpropagation called 
SuperSab (Tollenare, 1990) but it was modified several times. 

The model building method can be considered as a special learning algorithm, 
too. It does not require pre-determining whether a parameter is on the input or 
output side of the model for building up, consequently, it can be ordered also into 
the class of unsupervised learning algorithms. Moreover, having certain input-
output configurations at any stage or at the end of this algorithm run, the related 
models can be trained in a supervised way; consequently, the learning algorithm 
can be considered a special one with two faces of supervised and unsupervised 
learning at the same time. 

The modelling of many-valued mapping is also solved by the introduced 
algorithm. A similar problem is identified and solved excellently by a totally 
different approach (Brouwer and Pedrycz, 2003). By coincidence, in the next step 
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they examined also the field of incomplete data as this was also the case with the 
presented algorithm of authors (Viharos, et al., 2002). Currently the introduced 
sub-model identification solution is fully prepared to handle databases having 
many incomplete data sets. 

Various approaches can be found in the literature (see above) for improving the 
structure of ANN models also in the case of MLPs, adding and deleting neurons 
and links are typical steps of this approach. The resulted net of connected neural 
sub-networks can be considered also as a special solution of a structure 
determination process of ANNs. 

The proposed algorithm can result in an outcome similarly to a pruning/learning 
process combination, so it can be considered as a very special form of pruning 
solution, too. 

The applications of ANNs are typically preceded by a feature selection 
algorithm, especially in the field of manufacturing, to surmount their capability 
restrictions, with respect to the number of parameters and thus, model sizes. It can 
be found that feature selection and training processes are separated. The new, 
introduced algorithm brakes with this practice: it is a dynamic, integrated 
combination of these two steps. Consequently, the algorithm can be considered as a 
special feature selection solution, or also as a hybrid combination of feature 
selection and learning based model building. 

6. DECOMPOSITION OF PRODUCTION SYSTEMS 
The next two paragraphs illustrate two applications of the sub-model exploration 
algorithm. Application results are presented based on a data source collected to a 
production line, followed by an approach for high-level manufacturing application. 

6.1. DECOMPOSITION AT LOW-LEVEL PRODUCTION CONTROL 
A part of a Hungarian R&D project was aimed at building production models 
where dependencies among parameters are unknown. Modelling through learning 
is based on collected manufacturing data sets. No measurements were needed in 
the application in question, because of the huge number of related monitoring 
parameters. The data are stored in big databases incorporating the high value of 
information on the experience through production supervision collected in course 
of several years. Engineers’ opinion stating “there should be some connections 
among these parameters” was quite promising at the beginning. The introduced 
sub-model finding technique was applied. 
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Figure-2 (LEFT): The explored complexity of dependencies among different parameters 
(represented as numbers) of machines within a production line prescribed with 8.8% of 

expected estimation accuracy.  Figure-3 (RIGHT): The explored complexity of dependencies 
among different parameters (represented as numbers) of machines within a production line 

prescribed with 5.6% of expected estimation accuracy. 

 Figure-2 and Figure-3 show results representing the complexity of 
dependencies in our production equipment. Sixty-five parameters (represented as 
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numbers) were used for the description of some machines and processes, 
consequently, only a part of the whole production line was taken into account. 
Consequently a part of a production system was studied, indicating that a 
comprehensive analysis is an enormously complex and difficult task in the 
production line level. The expected levels of accuracy are different concerning 
Figures 2. and 3., namely, +/- 8.8% and +/- 5.6% respectively. Higher levels of 
allowed errors provide more and also smaller sub-models as represented in the 
pictures. It has to be mentioned that only a short list of examples of the rejected 
sub-models is highlighted in the pictures. The ratio in the number of accepted and 
rejected sub-models is approximately 1:7 in both of the cases. 

6.2. DECOMPOSITION AT HIGH-LEVEL PRODUCTION CONTROL 
This paragraph details the concept how to apply the above introduced algorithm for 
high-level manufacturing control. An agent-based control technique is addressed 
and agent identification is the target of the solution with a special aspect to directly 
receive learning agents. Agent identification for control production systems is, 
usually, solved through field-specific approaches. A well-known example is the 
PROSA architecture (Valkenaers, et al., 2001) where the identified agents are 
components of manufacturing systems, such as product, resource, order and staff. 
Not overemphasising either self-determination of main entities or downgrading the 
otherwise very important professional know-how incorporated in the pre-
determined structure, still the current approach breaks with the field-specific 
solution; it tries to identify agents automatically.  

The application of the method for the high-level production control: highlighting 
analogues between learning agent identification and sub-model exploration 
assignments. The following paragraph shows the analogues between the sub-model 
and agent identification, as the basis of the concept, as follows: 
• The exploration of separate, small sub-models is quite similar to the agent 

definition tasks, because an agent can be considered as a small part of a larger 
system. 

• More obvious is the analogue from the system parameters point of view. 
Opposite to the usually great number of parameters, an agent is used for 
incorporating local information; consequently, it considers only a part of a 
parameter set. 

• Decision making and reasoning are other important aspects of the analogue. 
Based on the definition of the agent itself, they make decisions, usually, to 
attain their own goals. To achieve the targets, it is especially important to have 
internal foresight capability. Models are needed in their own knowledge 
representation, which allows inferences for time ahead. The local information 
can be in accordance with the parameters of one or more sub-models explored 
with the introduced algorithm that is only a part of the whole parameter set. 
The analogue of foresight capability can be satisfied through the application of 
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the method on a database having parameters concerning the description of the 
time relevant behaviour of the analysed system. 

• The basic feature of artificial neural networks is their learning ability which is 
also one of the most required properties of agents. As explained above, a set of 
ANNs is one of the main results of the introduced solution.  Consequently, the 
analogue can be detected when these sub-models with learning ability are 
internal parts of the agent knowledge base. 

• Finally, the analogue derived from the network nature should be emphasised. If 
the sub-models or sub-model groups are ordered to individual agents, the 
received net of sub-models can be corresponded to agents communicating with 
each other through sharing values of common system parameters. 

The application of the method in high-level production control: realizing 
learning agent identification with combined simulation and sub-model 
identification techniques. Analogues detailed above serve as basis for the 
identification of agents in production systems. As mentioned before, one of the 
prerequisites of the sub-model exploration technique required also for agent 
identification is a table containing data vectors describing the behaviour of the 
system concerned. This data set can be collected by production control systems 
connected to manufacturing equipment or can be generated by a simulation model 
(Gerdes, et al., 2005). 

Decision points incorporated in production systems are analysed first. Let us 
assume that there exists an agent structure describing a given system (e.g. its 
restructuring is the main assignment) and also a simulation model has been built 
up. Other cases can be treated similarly to this one.  

The next part defines the contents of the data vectors as a coding of system 
states. Agents make decisions, consequently, a part of the data vector parameters 
consist of their variables. Another part of these vectors is formed by the internal 
measures of the agents, while a further part consists of parameters from the 
observation of their environment. Examples for the first are, e.g. capacity 
utilisation from the past and from the future, level of present, bidded, scheduled 
occupation, values of own target function, foreseen order types. The second one 
can be formed by external environment observations but, moreover, by some 
communication of agents. These three types of parameters will be specified for the 
solution, e.g. these variables have to be defined and collected for all of product, 
resource, order and staff agents in the case of PROSA architecture (Valckenaers, et 
al., 2001). 

Ordering the parts of parameters to each-other is the next main question. 
Various, e.g., time-shifted solutions can be introduced; preparation of date vectors 
with parameters coming from handling the elements of the same order can be an 
order-oriented, very simple solution. 
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Having the data set defined allows running the sub-model exploring algorithm. 
A set of sub-models having at least one common parameter is ordered to one agent, 
giving the knowledge base to it and ensuring learning ability, too. A separated set 
of sub-models allows identifying different agents. The contents of data table, as the 
basis for dependency exploration, contains, in an explicit or implicit way, the time 
parameter, consequently, the ordered sub-models ensure the required foresight 
capability, too. The requirement for continuous validation of the agent’s knowledge 
base will be emphasised, moreover, system restructuring is required if repeated 
learning cannot result in an appropriate level of the model accuracy. This makes 
the application possibilities of reinforcement learning techniques stronger in this 
field. 

Not all the sub-model findings result in a separated model set. In these cases the 
minimisation of common parameters among model sets can specify the individual 
agents. The values of these parameters have to be shared among agents, initiating 
continuous communication among them. Another communication of agents is 
inherited from the information exchange between the whole analysed system and 
its environment. 

This paragraph described a concept and steps for automatic agent identification 
by using the sub-model finding technique and the simulation model of the analysed 
system. These individual steps can be solved in another way, bringing up further 
research activities. One of the main challenges is to find the balance between the 
field-specific agent (pre)definition and the introduced, automatic agent 
identification approaches. 

7. CONCLUSIONS 
The paper introduced a new approach for automatic plant decomposition based on 
artificial intelligence techniques. A novel automatic solution based on a 
generalized feature selection technique and on artificial neural network training 
was developed by the author. The main goal is to explore connections among 
parameters of a given database. Based on the modelled dependency sets validated 
groups of parameters can form individual parts of the analysed system. Applying 
this technique to a production database containing data inherited typically from the 
shop-floor level through process monitoring systems (or based on virtual 
simulation models) results in groups of connected production parameters. 
Consequently, this solution allows decomposing a running or simulated 
manufacturing system into smaller, individual and autonomous components, 
threrefore, the approach can provide the basis for production system decomposition 
and reconfiguration. Two applications of the sub-model exploration algorithm were 
illustrated. Firstly application results were presented based on a data source 
collected from a production line, secondly an approach for high-level 
manufacturing application was detailed. The latter makes the identification of the 
individual parts of a production system possible. Consequently, it can be used for 



Proceedings of DET2008 
5th International Conference on Digital Enterprise Technology 

Nantes, France 
22-24 October 2008 

13 
 

system decomposition at plant level and for identifying agents of a distributed 
production control solution. 
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