Introduction

Motivation
- Wind is often regarded as “energy for free”
- Not true: O&M contributes ~20% to the final price of energy
- Investors’ expectations are high on turbine availability
- Failures must be detected and fixed as quickly and efficiently as possible

Objectives
- Integrated system for monitoring, diagnosis and maintenance
- The focus of the talk is on maintenance scheduling
Workflow covered

Failure Detection & **Prognosis**
- Failure detection and maintenance scheduling for wind farms
- Automated mapping of SCADA alarms & signals
- Decision support to human experts by diagrams & reports

Alarm
- Wind speed
- Produced energy
- Alarm (failure)
- Alarm (technicians present)
- Turbine restarts
Failure detection & prognosis

- Failure detection
 - Identify an existing failure
 - Measured signal falls out of operational limits
 - SCADA issues a warning, may stop the turbine

- Failure prognosis
 - Recognize failures before they actually occur
 - By physical measurements (e.g., vibration) or life data analysis
 - Current precision sufficient for controlling spare part logistics

Failure and maintenance mapping

- Selection of the best maintenance action for each failure
 - Recommendations from Failure Mode and Effects Analysis (FMEA)
 - Historical success rates
 - Interdependencies with other maintenance tasks
 - Cost analysis

- Software provides
 - Decision support to experts
 - Automated task generation
 - Weighted set covering problem
Maintenance scheduling

- Schedule of a team
- Selected task
- Availability of technicians, parts, etc.
- Wind speed

Maintenance execution

- Execution tracking by feedback from technicians
 - Actual failure mode
 - Failed component
 - Task execution, duration, spares, etc.

- Refinement of the applied models
 - Failure detection
 - Failure & maintenance mapping
 - Task definitions
 - Turbine design
The maintenance scheduling problem

- The model covers all types of field maintenance
 - Corrective (detected failure)
 - Predictive (prognosed failure)
 - Preventive (planned maintenance)
 - Retrofitting, etc.

- One instance of the scheduling problem involves
 - One zone: set of farms maintained using common resources
 - Short-term horizon: 3-7 days
 - The set of tasks defined in the input

Maintenance scheduling: tasks

- Tasks
 - Non-preemptive, with known deterministic duration
 - All requirements are assumed to be known a priori

- Requirements of the tasks
 - Skilled technicians
 - Spare parts
 - Hired services (cranes, special trucks)
 - Weather conditions

- Further constraints
 - Travel times between farms
 - Incompatibility of tasks, etc.
Maintenance scheduling: objectives

- Production of turbine depends on
 - Wind speed (external)
 - Turbine condition (depends on maintenance schedule – internal)

- Production loss due to
 - Failures
 - Maintenance

- Optimization criterion
 - Minimizing total production loss
 - Irregular criterion (potentially worth postponing the tasks)

Solution approach

- Combination of mixed-integer programming (MIP) and custom heuristics
 - MIP solves the core optimization problem
 - Heuristics reduce the complexity of the MIP and handle some special situations

- The MIP
 - Time-indexed formulation
 - Solved by a commercial MIP solver (ILOG Cplex 11.2)
 - Solved to optimality (unless time limit is hit)
Solution approach: the MIP

Minimize

\[\sum_{j=1}^{J} \sum_{t=1}^{T} z_{j,t} + \sum_{i=1}^{N} \phi_i y_i \] (1)

subject to

\[\sum_{k=1}^{K} \sum_{r=1}^{R} x_{i,k,r} + y_i = 1 \quad \forall i \] (2)

\[x_{i,k,r} = 0 \quad \forall i, j, k : \epsilon \in j \] (3)

\[\sum_{i=1}^{N} \sum_{k=1}^{K} x_{i,k,r} \leq 1 \quad \forall k, t \] (4)

\[\sum_{r \in \mathcal{R} : f(t) = f} \sum_{t \in \mathcal{T} : t' < t + p_t} x_{i,k,r} \leq \delta_{i,f,t} \quad \forall i, f, t \] (5)

Min. production loss

Task executed in some way or postponed

Infeasible assignments excluded

Capacity constraints (technicians, services)

Solution approach: the MIP (contd.)

Production loss

Technicians must travel

Task compatibility

Variables’ domains
Solution approach: the heuristics

- Heuristics for pre-processing
 - Decomposition according to nearby sets of farms
 - In massively oversubscribed problems, omit the least important tasks
 - Segmentation of extremely long tasks

- Heuristics for post-processing
 - Iterative improvement by re-partitioning and re-positioning the segments (necessary due to the segmented long tasks)

Computational evaluation

- Evaluation of the MIP approach to the core problem
 - Heuristics switched off
 - Random instances generated based on real historical records
 - Up to 50 tasks at 7 wind farms
 - Time limit set to 10 minutes

- Results
 - 95% of the instances solved to proven optimality
 - Average optimality gap of ~0.01% for the remaining instances

<table>
<thead>
<tr>
<th>N</th>
<th>F=3 Opt Time (s) Gap (ppm)</th>
<th>5 Opt Time (s) Gap (ppm)</th>
<th>7 Opt Time (s) Gap (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5 0.18 -</td>
<td>5 0.12 -</td>
<td>5 0.13 -</td>
</tr>
<tr>
<td>20</td>
<td>5 1.96 -</td>
<td>5 1.26 -</td>
<td>5 0.55 -</td>
</tr>
<tr>
<td>30</td>
<td>5 6.39 -</td>
<td>5 11.40 -</td>
<td>5 3.36 -</td>
</tr>
<tr>
<td>40</td>
<td>5 51.40 -</td>
<td>5 85.31 -</td>
<td>5 123.35 -</td>
</tr>
<tr>
<td>50</td>
<td>3 439.48 259</td>
<td>3 311.74 280</td>
<td>5 25.35 -</td>
</tr>
</tbody>
</table>
Evaluation on real-life problems

- Experimental setup
 - 105 turbines at 6 farms, maintained by 12 teams
 - Scheduler was run every morning during 3 weeks
 - Larger problems than expected, with 200-250 tasks

- Results
 - Overwhelmingly positive feedback
 - Optimality gap around ~1%
 - Some additional features requested, e.g.,
 - Certain tasks require multiple teams
 - Preempted tasks must be continued by the same team

Conclusions

- Integrated system for monitoring, diagnosis and maintenance of wind farms
 - Maps available engineering knowledge in failure detection
 - New models and algorithms for maintenance scheduling
 - Optimizes wind farm operation by minimizing production loss
 - Validated on real-life data
 - Potential industrial exploitation
Thank you for your attention!