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Abstract – The paper introduces a methodology to 

define production trend classes and also the results to 

serve with trend prognosis in a given manufacturing 

situation. The prognosis is valid for one, selected 

production measure (e.g. a quality dimension of one 

product, like diameters, angles, surface roughness, 

pressure, basis position, etc.) but the applied model 

takes into account the past values of many other, 

related production data collected typically on the 

shop-floor, too. Consequently, it is useful in batch or 

(customized) mass production environments. The 

proposed solution is applicable to realize production 

control inside the tolerance limits to proactively avoid 

the production process going outside from the given 

upper and lower tolerance limits.  

The solution was developed and validated on real data 

collected on the shop-floor; the paper also summarizes 

the validated application results of the proposed 

methodology. 

 I. INTRODUCTION 

The paper introduces a methodology to define 

production trend classes and also the results to serve with 

a trend prognosis in a given manufacturing situation. 

The overview on production trend forecast methods in 

the next paragraph concludes that the identification and 

forecast of production trends are key issues on the shop-

floor of manufacturing plants; moreover, many artificial 

intelligence techniques are applied in this field [1][2]. 

Trend types can be formulated to define a classification 

model for the prognosis; Control Chart Pattern (CCP) is 

the mostly used keyword for these classes [3][4], 

however the definition of the existence or absence of a 

trend situation is not specified in the literature, so the 

current paper proposes a novel methodology for that issue 

described in paragraph IV. 

The paragraph III. gives an overview of the usually 

applied production databases and emphasizes the typical 

difficulty of their connections and integration; moreover a 

novel method is illustrated how to establish a connection 

of databases having no common keys but varying time 

handling capabilities. 

The integration of quality, manufacturing execution, 

alarm handling and machine log information together 

with the definition of trend situations and the availability 

of developed machine learning techniques allowed 

building up production trend identification learning 

models: their modelling capabilities are reported in the 

next paragraph.  

Conclusions on all the results, acknowledgement and 

referred literature close the paper. 

 II. PRODUCTION TREND FORECAST METHODS 

Production forecasting has received significant 

attention in the last decades [5][6][7]. There are many 

approaches for trend identification and forecasting in time 

domain to ensure with the required level of production 

quantity and quality. This is one of the important 

assignments of the Industry 4.0, direction, too [8], that is 

mentioned in USA as Industrial Internet or in more 

general as Cyber-Physical Production Systems (CPPSs) 

[9][10]. 

El-Midany et al. used ANNs to recognize a set of sub-

classes of multivariate abnormal patterns [11] in 

machining of a crank case as one of the main components 

of compressor. They used a simulated and a real world 

data set as well; furthermore they can identify the 

responsible variable(s) on the occurrence of the abnormal 

pattern. Ranaee and Ebrahimzadeh used a hybrid 

intelligent method [3] to recognize whether a process 

runs in its planned mode or it has unnatural patterns. This 

method includes three modules: a feature extraction 

module, a multi-class SVM-based classifier module 

(MCSVM) and an optimization module using genetic 

algorithm. They tested the algorithm on synthetically 

generated control charts. Control Chart Patterns (CCPs) 

with different levels of noise were analyzed by 

Lavangnananda and Khamchai [4]. They implemented 
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and compared three different classifiers: Decision Tree, 

ANN, and the Self-adjusting Association Rules Generator 

(SARG) for process CCPs that were generated by 

predefined equations of GARH (Generalized 

Autoregressive Conditional Heteroskedasticity) Model 

for X̅ chart. Pelegrina et al. used different Blind Source 

Separation (BSS) methods in the task of unmixing 

concurrent control charts to achieve high classification 

rates. [12] Gutierrez and Pham presented a new scheme 

to generate training patterns for ML algorithms: Support 

Vector Machine (SVM) and Probabilistic Neural 

Network (PNN) [13]. Yang et al. proposed a hybrid 

approach that integrates extreme-point symmetric mode 

decomposition (ESMD) with extreme learning machine 

(ELM) to identify typical concurrent CCPs [14]. Motorcu 

and Güllü constructed X-R control charts for each 

production line on the data obtained from shop-floor to 

provide high quality production by eliminating key 

problems: undesirable tolerance limits, poor surface 

finish or circularity of spherodial cast iron parts during 

machining [15]. 

Huybrechts et al. applied standardization, trend 

modeling, and an autoregressive moving average 

(ARMA) model to determine short-term correlation 

between subsequent measurements. The out-of-control 

observations can be determined precisely with the 

Dijkstra model and cumulative sum chart of the corrected 

residuals between the measured and predicted values. 

Milk yield data from two Automatic Milking System 

(AMS) farms and one farm with a conventional milking 

system were used for the case study [16]. 

Köksal et al. in 2011 reviewed the quality management 

related applications of various data mining techniques in 

manufacturing industry published between 1997-2007 

[1]. They grouped the quality related assignments into 

four groups: product/process quality description, 

predicting quality, classification of quality, and parameter 

optimization. They proved the increasing importance of 

such research and application techniques and their 

relevance in industry. Their analysis on the literature also 

indicated that data mining applications were mostly 

encountered in the metal, computer and electronic 

products manufacturing industries, and relatively less 

observed in plastics, glass, paper, food processing and 

chemical manufacturing industries. The importance of 

integrating production and quality data was highlighted in 

their paper, too. Applications involving classification of 

quality were not as many as those in the predicting 

quality category. 

Viharos and Monostori presented an approach, already 

in 1997 [17] for optimization of process chains by 

artificial neural networks and genetic algorithms using 

quality control charts. It was shown that the control of 

“internal” parameters (temporal parameters along the 

production chain) is a necessity, by this way, early 

decisions can be made whether to continue the production 

of a given part or not. Also continuous optimization of 

the production system is possible using the proposed 

solution. 

Concerning the applied techniques, the most prevalent 

approaches are based on statistical methods, such as 

autoregression, moving average and their combinations: 

autoregressive integrated moving average model 

(ARIMA) [18] with use of linear regression analysis, 

quasi-linear autoregressive model [19] or Markov chain 

models (MCM) [20]. These methods based on historical 

production or time series data for modelling and 

prediction. 

Another approaches has appeared with the evolution of 

artificial intelligence, such us modelling with artificial 

neural networks (ANN), support vector machines (SVM) 

or nearest neighbor approaches based on pattern sequence 

similarity [21]. There are several curve-fitting methods in 

this field for small sample data, such as genetic algorithm 

[22]. By using artificial neural networks combined with 

statistical methods to compensate drawbacks of the 

separate approaches in trend forecasting lead to better 

classification and approximation results. 

 III. MANUFACTURING ASSIGMENT & 

INFORMATION SOURCES 

Many different IT systems are running on shop-floor, 

all of them have their main functionality they are 

supporting. In a business intelligence approach these data 

can be linked together to result more knowledge about the 

details of the production system. Without the appropriate 

linkage a significant part of this knowledge is hidden 

from the operators and the production engineers. Vogel-

Heuser et al. reported that the appropriate integration of 

IT systems in production environment is still a challenge 

for the industry, since “on the software side, a typical 

problem is the consistency between interfaces of 

components both on the syntactical as well as semantic 

levels” [23], so, the continuous maintenance of 

overlapping information is a key question. The Fig. 1. 

shows the systems related to the published analysis, as a 

typical example of shop-floor IT environment.  

 

Quality
measurements

Daily Reports
Product Monitoring

WorkpiecesCNCs, PLCs

Machine
Logs

Test Records
Product
Tracking

WorkpiecesOperatorsCNCs, PLCs
 

Fig. 1. Data sources on the shop-floor. 
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Physically, information is inherited from different 

sensors and controllers (PLCs and CNCs), measuring 

machines or sometimes the operators; the figure 

represents the logical sources that are relevant in a 

business intelligence point of view: the machines, the 

operators and the workpieces. One of the main scopes of 

the paper is to collect and link all the information about 

individual workpieces, and to detect possible trends and 

relations in the production based on the measurement 

series of the workpieces. 

The quality control systems check the geometry and 

other features of the workpieces. Measuring equipments 

process the products independently and the correlations 

among the measure sets of different machines are 

typically unknown. It is often simple to link the given 

measured data to the workpiece, e.g. using a serial code, 

the time of the measure. One of the main difficulties is 

the frequency of the measures, because in the most cases 

only every ‘n
th

’ are measured, according to a certain 

sampling frequency. 

The Manufacturing Execution System (MES, Product 

Tracking in Fig. 1.) logs all the operations and the 

production time of the individual workpieces. This is the 

main information source to link the manufacturing 

machines/operations to the individual workpieces. On the 

basic level the production monitoring system provides 

measurement information with the related timestamps 

about the status of the manufacturing machines and the 

possible reasons when they are not in production. Other 

reports are mainly created by the human operators (e.g. 

daily working reports, special test results).  During ETL 

process, an important feature of a business intelligence 

system is to correct inconsistency among manually 

recorded data.  

The machine logs are typically not stored in the factory 

central IT systems and the data they have are deleted after 

a certain time period. On the other hand many machines 

have internal measuring systems, moreover, they store 

internally the measured data and/or the e.g. machining 

parameter corrections performed on the basis of these 

measurement. To solve this synchronization/mapping 

problem an algorithm was developed to find the best 

fitting delta time between the two independent time series 

provided by the two independent IT systems (machine 

logs and MES). 

The appropriately connected data set can be used as an 

integrated data source of the comprehensive shop-floor 

business intelligence system.  

 IV.  PRODUCTION TREND DEFINITION 

The preliminary results of the shop-floor business 

intelligence applications allowed analyzing/reporting 

special manufacturing related problems using connected 

data sets. The overview on production trend forecasting 

proved the importance of identifying and estimating the 

production trends already before the process is going 

outside the tolerance limits, e.g. to ensure with the 

requested process capability and stability indexes. The 

review concluded and also the experiences are mirroring 

that it is far not an easy task to define and formulate 

production trends. A decision is needed about a time 

sequence (time series) of some measurement points 

whether they form a trend or not. Some aspects of this 

decision is e.g. what trend length is expected/required, 

what is the minimum and maximum value, what is the 

minimum frequency of the measurement points, in what 

direction the trend is going, what form it has (e.g. linear, 

exponential), where it starts, etc. Even so if a production 

process that can be described with equations, or by any 

other form of knowledge representation method, the 

answers for these questions are not easy, moreover it is 

also dependent on the engineering aspects of the given 

manufacturing assignment. In a majority of industrial 

cases: 

 the plant engineers do not have fix definition what 

time sequence they consider as trend, 

 usually, there exists a hypotheses that there are 

trends in the processes, 

 many and various ideas arise how to use trend 

forecasts if they are recognized.. 

Consequently, the identification and forecast of “any” 

trends have significant manufacturing potentials and 

benefits. The next illustration gives a novel methodology 

to automatically determine “What is a production 

trend?”. 

In the next analysis, a critical production feature (e.g. 

quality measure) was selected that is manufactured in 

three operation steps in three different machines in the 

linear production line. The behavior of the most critical 

second operation was investigated. As the third operation 

changes very little in the final value of the selected 

feature, it was assumed that the measurements at the end 

of line (EOL) show significant correlations of the 

circumstances of the second operation. This critical 

processing is done in three alternative machines and the 

results of all these three were investigated. 

The prepared, linked database allowed working with 

the EOL values ordered by the machining sequence 

according to the time of the second operation; 

consequently, in general, with this approach it is possible 

to analyze an operation through the measured data 

collected at another operation. This is an important 

advantage of the presented approach, e.g. analyses based 

on varying, available data frequencies and measurement 

time points are possible. Four different time-window 

periods were selected for the examination but results of 

one, having the highest industrial relevance is presented 

in the paper.  

The Fig. 2. shows one example where the average and 

the deviation on a certain time-window of the individual 

measurements are also visualized. 
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Fig. 2. Measurement points, averages (lines’ vertical 

positions) and deviation values (lines’ thickness) in the 

investigated data set. 

 

The figure shows also that sudden average jumps can 

be recognized in the given production process. Based on 

these visual investigations a systematic algorithm was 

defined to explore trends in the given data sets. Average 

values and also linear regression and average jumps were 

sought after. The average jumps were defined at a given 

time point of one workpiece machining as difference 

between the average of the previous values and the 

average of the following values for a certain time 

window. Average deviation on these time windows was 

also calculated. 

It was clear that the trend exploration is not possible 

during the time periods when the production is running 

with moderate speed, consequently, only those periods 

were accepted (presented and used) when the production 

(data) reached a certain, minimum frequency level. 

The Fig. 3. below shows all the average jump levels up 

or down (vertical axis) and their calculated deviations 

(horizontal axis) in the analyzed (long) production 

horizon. 

 
 Fig. 3. Jump level (vertical axis) and deviation 

(horizontal axis) values in the investigated data set 

 

This representation (jumps in the averages versus 

distribution in the data) has motivated the definition of 

the trend cases. Trend means a special sequence of data in 

time and in the value domain together, otherwise no trend 

is given. Fig. 4. shows typical production trends on the 

left side, while the same production data are shown on the 

right side, but with random mixing the time points of the 

same measured data (so no trend is given). 

 
Fig. 4. The same measured production/workpiece values (real case) with their identical distributions, having trends 

in the left and without any trend in the right (horizontal axis: time, vertical axis: production quality measure values). 

 

This implication (Fig. 4.) leads to the approach taking 

the measured real production values that are pairs of 

values & time points from the shop-floor but the mixing 

of their time points (“fully”) randomly results such a 

measurement series that have the same distribution than 

the original production sequences but for sure all time 

domain trends are eliminated. The preparation of such a 

“trendless” dataset and its representation in the same 

method as in Fig. 4., together with the original production 

dataset having trends formulates clearly those non-

overlapping zones where production trends are given 

(Fig. 5.). The data points of the original production trend 

are on the left side of the figure, representing much lower 

distribution than the mixed, trendless data points on the 

right side, while the trend jumps are similar or slightly 

larger in the original production measurements. This 

experience indicates the existence of real trends since: 

 the trend “sizes” (jump levels, vertically) are 

slightly larger, moreover  

 the distribution of the related measurement values 

are significantly smaller (horizontally) than in case 

of the mixed dataset and 

 the two areas are mainly separated with only 

slightly overlapping zones. 

A range could be specified between the two datasets, 

defining the border between trend and not trend situations 

(Fig. 6.). 



14th IMEKO TC10 Workshop Technical Diagnostics 
New Perspectives in Measurements, Tools and Techniques 

for system’s reliability, maintainability and safety 

Milan, Italy, June 27-28, 2016 

 
Fig. 5. Data sets with trends (left size) and without 

trends (right side). 

 

The near to ellipsoidal characteristics of the trendless 

point zone implicated fitting an ellipsoid around these 

values. Principal component analysis with e.g. 95% 

confidence interval can be applied to determine an exact 

border between the two datasets (Fig. 6.). An interesting 

experience arose that the largest principal vector was 

almost parallel to the horizontal axis and almost crossing 

at the zero vertical value, but not exactly. 

  
Fig. 6. The exact border between trend and trendless 

production situations. 

 

Having an exact border between the trend and not trend 

cases allows defining a classification problem for trend 

identification (Fig. 7.). When the distribution values of 

the production points are horizontally above the middle 

point of the ellipsoid they are considered as no trend 

situations. Consequently, three classes can be formulated: 

 Trend up: Production measures of the analyzed 

workpieces in the considered interval form a trend 

up class through the points in Fig. 7. above the 

zero vertical axis and horizontally less the than the 

ellipsoid center when they are outside the 

identified ellipsoid.  

 Trend down: these situations can be defined 

similarly to the trend up cases but the values are 

below the zero horizontal axis. 

 No trend: points inside the ellipsoid and also that 

have distribution higher than the center of the 

identified ellipsoid.  

 

 
Fig. 7. Identified fields and borders of trend classes (F: 

trend goes upwards, L: trend goes downwards, N: no 

trend is given) 

 

Each point in Fig. 7. represents a trend class and can be 

ordered to one individual workpiece, consequently, for 

each workpiece trend class can be ordered representing 

the trend in its’s future. Consequently, it is a 

classification assignment where trend classes define the 

outputs while past values of many other, related 

measurements collected typically on the shop-floor form 

the available input information. 

Naturally, the relationship between past production 

measurements and the trend classes is unknown, 

consequently, it is impossible to form a closed form, or 

any equation based model for this task. However given 

measurements at each workpiece (even with sampling) 

lead to the possibility to use any learning model based on 

available shop-floor data. The probably non-linear and 

clearly multidimensional relationship among input and 

output data indicated the application of artificial neural 

network model for the formulated classification 

assignment [24], where the model is able to forecast the 

trend in form of trend class specification at each 

manufactured and measured workpiece. 

 V. PRODUCTION TREND FORECAST RESULTS 

The previously defined trend class specification can be 

applied dynamically to the production data resulting in a 

large labelled dataset which can be used for model 

building and testing. 

The precision of the forecast model can be measured by 

the amount of data points correctly labelled by the model 

which can be expressed as a percentage of the whole 

dataset (Fig. 8.). 

Fig. 8. shows the classification results of the applied 

forecast model by measuring the percentage of data 

points falling into the nine possible recognition 

categories. As there are three real and three prognosed 

classes (F: trend up, L: trend down, N: no trend) the 

number of different recognition cases is nine. On the 

diagram the blue, middle columns show the amount of 
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correct recognition and remaining, red columns show the 

incorrect recognitions. One can see that the ratio of 

correct trend classification is around 60-70%. 

 
Fig. 8. Classification results: Target represents the real 

measurements while Output means the model 

classification decision. 

 

As the classes are connected to the individual elements 

of a time series (manufactured workpieces) the 

recognition categories can be arranged in continuous 

trend sections (Fig. 9.). 

 

 
Fig. 9. Trend decisions at each workpiece (horizontal 

axis: production time, vertical axis: quality measure 

values, one-by-one of the individual produced products) 

 

Fig. 9. shows the trend sections on a small part of the 

e.g. whole year time series. Black (on the upper side) 

denotes the correctly diagnosed F (trend up) trends; blue 

(on the lower side) denotes the correctly diagnosed L 

(trend down) trends and red (mainly in the middle) 

denotes any form of misclassification. The y axis is the 

measure from which the classes were directly derived. It 

can be seen that the incorrectly diagnosed data points are 

concentrated in the middle area. 

Consequently, it is proven that the production trends 

can be recognized with fair accuracy with the proposed 

approach. 

 VI. CONCLUSIONS 

The paper presented a methodology to define 

production trend classes and also the results to serve with 

trend prognosis in a given manufacturing situation. The 

solution is useful in batch or (customized) mass 

production environments because it continuously collects 

and analyses data from the shop floor sensors and is 

applicable to realize production control inside the 

tolerance limits to proactively avoid the production 

process going outside from the given upper and lower 

tolerance limits.  

The review of the production trend forecast methods 

concluded and also the experiences are mirroring that it is 

far not an easy task to define and formulate production 

trend classes. The developed solution for solving this 

issue collects shop-floor data and based on the concrete 

manufacturing values it is able to define three trend 

classes: i) trend goes up, ii) trend goes down and iii) no 

trend is given. It is an automatic process, consequently, 

for this decision no prescriptions are needed from the 

plant engineers or shop-floor operators. However, the 

resulted classes can be modified by them when any 

hypothesis or experiences are given in this field. 

The described method for production trend prognosis 

considers past values from any related (e.g. physically 

previous) operations e.g. measurements, alarms, etc. 

Using historical data the applied artificial neural network 

model determines the prognosis at each produced 

workpiece. This model is built up also on shop-floor data 

of the process analyzed, consequently, it is valid for that 

concrete process under the given, prompt situations. 

The solution was developed and validated on real data 

collected on the shop-floor; the paper summarizes the 

validated application results of the proposed 

methodology, too. 
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